Inhibition of heat shock protein 90 function by ansamycins causes the morphological and functional differentiation of breast cancer cells.

نویسندگان

  • P N Münster
  • M Srethapakdi
  • M M Moasser
  • N Rosen
چکیده

17-(Allylamino)-17-demethoxygeldanamycin (17-AAG) is an ansamycin antibiotic that binds to a conserved pocket in Hsp90 and induces the degradation of proteins that require this chaperone for conformational maturation. 17-AAG causes a retinoblastoma (RB)-dependent G1 block in cancer cells and is now in clinical trial. In breast cancer cells, G1 block is accompanied by differentiation and followed by apoptosis. The differentiation is characterized by specific changes in morphology and induction of milk fat proteins and lipid droplets. In cells lacking RB, neither G1 arrest nor differentiation occurs; instead, they undergo apoptosis in mitosis. Introduction of RB into these cells restores the differentiation response to 17-AAG. Inhibitors of the ras, mitogen-activated protein kinase, and phosphatidylinositol 3-kinase pathways cause accumulation of milk fat proteins and induction of lipid droplets when associated with G1 arrest but do not cause morphological changes. Thus, regulation of Hsp90 function by 17-AAG in breast cancer cells induces RB-dependent morphological and functional mammary differentiation. G1 arrest is sufficient for some but not all aspects of the phenotype. Induction of differentiation may be responsible for some of the antitumor effects of this drug.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The bioreduction of a series of benzoquinone ansamycins by NAD(P)H:quinone oxidoreductase 1 to more potent heat shock protein 90 inhibitors, the hydroquinone ansamycins.

We have previously evaluated the role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the bioreductive metabolism of 17-(allylamino)-demethoxygeldanamycin (17AAG) to the corresponding hydroquinone, a more potent 90-kDa heat shock protein (Hsp90) inhibitor. Here, we report an extensive study with a series of benzoquinone ansamycins, which includes gel-danamycin, 17-(amino)-17-demethoxygeldanamycin...

متن کامل

A mechanistic and structural analysis of the inhibition of the 90-kDa heat shock protein by the benzoquinone and hydroquinone ansamycins.

The benzoquinone ansamycins inhibit the ATPase activity of the 90-kDa heat shock protein (Hsp90), disrupting the function of numerous client proteins involved in oncogenesis. In this study, we examine the role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the metabolism of trans- and cis-amide isomers of the benzoquinone ansamycins and their mechanism of Hsp90 inhibition. Inhibition of purified...

متن کامل

کاهش بیان پروتئین شوک حرارتی HSP90α پس از مواجهه با داروی دوکسوروبیسین در لاین های سلولی سرطان پستان (MCF-7 و MDA-MB-231)

Background and purpose: Incidence of breast cancer is increasing day by day. Scientists are interested in the effects of inhibition of breast cancer cell on treatment of this cancer. The aim of this study was to determine IC50 of doxorubicin in 24 hours on cell lines MCF-7 and MDA-MB-231 and the expression of heat shock protein HSP90α as a factor in the cell before and after 24 hours expo...

متن کامل

Effects of geldanamycin, a heat-shock protein 90-binding agent, on T cell function and T cell nonreceptor protein tyrosine kinases.

The benzoquinoid ansamycins geldanamycin (GA), herbimycin, and their derivatives are emerging as novel therapeutic agents that act by inhibiting the 90-kDa heat-shock protein hsp90. We report that GA inhibits the proliferation of mitogen-activated T cells. GA is actively toxic to both resting and activated T cells; activated T cells appear to be especially vulnerable. The mechanism by which GA ...

متن کامل

Withanolides-Induced Breast Cancer Cell Death Is Correlated with Their Ability to Inhibit Heat Protein 90

Withanolides are a large group of steroidal lactones found in Solanaceae plants that exhibit potential anticancer activities. We have previously demonstrated that a withanolide, tubocapsenolide A, induced cycle arrest and apoptosis in human breast cancer cells, which was associated with the inhibition of heat shock protein 90 (Hsp90). To investigate whether other withanolides are also capable o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 61 7  شماره 

صفحات  -

تاریخ انتشار 2001